
									REVI	SION	S									
LTR	DESCRIPTION										D	ATE (/R-MO-I	DA)	APPROVED		D			
А	Add case outline 2 (square chip carrier package) for 27014. Editorial changes throughout.						ge) for	vendo	r CAG	E	2	25 Jur	ne 198	7	N A Hauck					
REV																				
PAGE																				
REV STATUS	3			RE	V		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
OF PAGES				PA	GE		1	2	3	4	5	6	7	8	9	10	11	12	13	
Defense Elec	tronic	s			PAREI eg A. P					MILITARY DRAWING This drawing is available for use by all Departments an Agencies of the Department of Defense				and						
Supply Cente Dayton, Ohio					CKED Di Ce						Agend LE:							GH-SI	PEED	
Original date of drawing:					ROVE Haucl					TITLE: MICROCIRCUITS, DIGITAL, HIGH-SPEED CMOS, BUFFER, QUAD THREE-STATE, MONOLITHIC SILICON										
14 January 19	87				ZE \	COD	14:	ит. ис <u>933</u>		DWG NO.										
AMSC N/A				REV			A			PAG	SE	1	OF		13	868	48 			

1. SCOPE

- 1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".
 - 1.2 Part number. The complete part number shall be as shown in the following example:

1.2.1 <u>Device type</u>. The device type shall identify the circuit function as follows:

Device type	Generic number	Circuit function
01	54HC126	Quad three-state noninverting buffer

1.2.2 Case outlines. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter	Case outline
С	D-1 (14-lead, 1/4" x 3/4"), dual-in-line package
2	C-2 (20-terminal, .350" x .350"), square chip carrier package

1.3 Absolute maximum ratings. 1/

Supply voltage range (V _{CC})	
Input diode current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output diode current, $l_{OK}(V_O < 0 \text{ or } V_O > V_{CC})$	±20 mA
Continuous output current, I _O (V _O = 0 to V _{CC)}	±35 mA
Continuous current through V _{CC} or GND pins	±70 mA
Storage temperature range	65° C to +150° C
Maximum power dissipation (P _D)	500 mW <u>2</u> /
Lead temperature (soldering, 10 seconds)	
Thermal resistance, junction-to-case (θ_{JC}):	
Case C	See MIL-M-38510, appendix C
Case 2	60°C/W 3/
Junction temperature (T _J)	+175°C

1.4 Recommended operating conditions.

Supply voltage (V _{CC})	+2.0 V dc to +6.0 V dc
Case operating temperature range (T _C)	-55° C to +125° C
Input rise or fall time :	
$V_{CC} = 2.0 \text{ V dc}$ $V_{CC} = 4.5 \text{ V dc}$	1000 ns
V _{CC} = 4.5 V dc	500 ns
V _{CC} = 6.0 V dc	400 ns

- Unless otherwise specified, all voltages are referenced to ground.
- For $T_C = +100^{\circ}$ C to $+125^{\circ}$ C, derate linearly at 12 mW/° C. When a thermal resistance for this case is specified in MIL-M- $_{38}$ 510, appendix C, that value shall supersede the value specified

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A	CODE IDENT. NO. 14933	5962-86848
DAYTON, OHIO 45444		REV A	PAGE 2

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification and standard</u>. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510 - Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.3 Logic diagrams. The logic diagrams shall be as specified on figure 3.
 - 3.2.4 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range.
- 3.4 <u>Marking</u>. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 <u>Notification of change</u>. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A	CODE IDENT. NO. 14933	5962-86848
		REV A	PAGE 3

TABLE I. <u>Electrical performance characteristics</u> .								
Test	Symbol	Conditions	Group A	Limits		Unit		
		-55° C ≤ T _C ≤ + unless otherwise s	specified	subgroups	Min	Max		
High level output voltage	V _{OH}	$V_I = V_{IH} \text{ or } V_{IL}$ $ I_O \le 20 \mu A$	V _{CC} = 2.0 V	1, 2, 3	1.9		V	
	_	Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι	V _{CC} = 4.5 V	Į	4.4		Į	
			V _{CC} = 6.0 V		5.9			
		$V_I = V_{IH} \text{ or } V_{IL}$ $ I_O \le 6 \text{ mA}$	V _{CC} = 4.5 V		3.7			
		$V_I = V_{IH} \text{ or } V_{IL}$ $ I_O \le 7.8 \text{ mA}$	V _{CC} =6.0 V		5.2			
Low level output voltage	V _{OL}	$V_I = V_{IH} \text{ or } V_{IL}$ $ I_O \le 20 \ \mu\text{A}$	V _{CC} = 2.0 V			0.1		
		11 ₀ 1≤ 20 μA	V _{CC} = 4.5 V			0.1		
			V _{CC} = 6.0 V			0.1		
		$V_I = V_{IH} \text{ or } V_{IL}$ $ I_O \le 6 \text{ mA}$	V _{CC} = 4.5 V			0.4		
		$V_I = V_{IH} \text{ or } V_{IL}$ $ I_O \le 7.8 \text{ mA}$	V _{CC} =6.0 V			0.4		
High level input voltage	V _{IH}	V _{CC} = 2.0 V			1.5			
<u>2</u> /		V _{CC} = 4.5 V			3.15			
		V _{CC} = 6.0 V			4.2			
Low level input voltage	V_{IL}	V _{CC} = 2.0 V				0.3	ļ	
<u>2</u> /		V _{CC} = 4.5 V				0.9		
		V _{CC} = 6.0 V				1.2		

See footnotes at end of table.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A	CODE IDENT. NO. 14933	5962-86848
		REV A	PAGE 4

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test Symbol		Conditio	Group A subgroups	Limits		Unit	
		unless otherw	-55° C ≤ T _C ≤ +125 $^{\circ}$ C unless otherwise specified		Min	Max	
Three-state output leakage supply current	l _{OZ}	$V_I = V_{IH} \text{ or } V_{IL}$ $V_{CC} = 6.0 \text{ V}, V_O = V_{CC} \text{ or } V_{CC} = 0.0 or $	1, 2, 3	-10	+10	μA	
Input current	I _{IN}	$V_I = V_{CC}$ or GND $V_{CC} = 6.0 \text{ V}$		-1.0	1.0	μA	
Quiescent supply current	I _{CC}	$V_1 = V_{CC}$ or GND $ I_O = 0 \mu A$				160	
Input capacitance	C _{IN}	2.0 V ≤ V _{CC} ≤ 6.0 V See 4.3.1c		4		10	pF
Output capacitance	C _{OUT}	See 4.3.1c			20		
Functional tests		See 4.3.1d	7				
Propagation delay <u>3</u> / A to Y	t _{PHL}	T _C = +25° C See figure 4	V _{CC} = 2.0 V	9		120	ns
Ator		See ligule 4	V _{CC} = 4.5 V			24	
			V _{CC} = 6.0 V			20	
		T _C = -55° C, +125° C See figure 4	$V_{CC} = 2.0 \text{ V}$	10, 11		180	
		See ligure 4	V _{CC} = 4.5 V			36	
			V _{CC} = 6.0 V			31	
Output enable 3/	t _{PZH}	T _C = +25° C	V _{CC} = 2.0 V	9		125	ns
G to Y	^t PZL	See figure 4	V _{CC} = 4.5 V			25	
			V _{CC} = 6.0 V		_	21	

See footnotes at end of table.

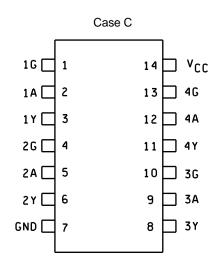

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A	CODE IDENT. NO. 14933	5962-86848
DAYTON, OHIO 45444		REV A	PAGE 5

TABLE I. Electrical performance characteristics - Continued.

Test Symbo		Conditio	Group A	Limits		Unit	
		-55° C ≤ T _C ≤ +125° C unless otherwise specified		subgroups	Min	Max	
Output enable 3/ G to Y	t _{PZH}	T _C = -55° C, +125° C	V _{CC} = 2.0 V	10, 11		188	ns
	^t PZL	See figure 4	V _{CC} = 4.5 V] [38	
			V _{CC} = 6.0 V] [31	
Output disable 3/ G to Y	t _{PHZ}	T _C = +25°C	V _{CC} = 2.0 V	9		125	
	[†] PLZ	See figure 4	V _{CC} = 4.5 V] [25	
			V _{CC} = 6.0 V			21	
		T _C = -55° C, +125° C See figure 4	V _{CC} = 2.0 V	10, 11		188	
			V _{CC} = 4.5 V			38	
_			V _{CC} = 6.0 V			31	
Transition times 4/	t _{TLH}	T _C = +25° C	V _{CC} = 2.0 V	9		60	ns
	[†] THL	See figure 4	V _{CC} = 4.5 V			12	
			V _{CC} = 6.0 V			10	
		T _C = -55° C, +125° C See figure 4	V _{CC} = 2.0 V	10, 11		90	
			$V_{CC} = 4.5 \text{ V}$			18	
			V _{CC} = 6.0 V			15	

For a power supply of 5.0 V ±10%, the worst case output voltage (V_{OH} and V_{OL}) occur for HC at 4.5 V. Thus, the 4.5 V values should be used when designing with this supply. Worst case V_{IN} and V_{IL} occur at V_{CC} = 5.5 V and 4.5 V, respectively. (The V_{IH} value at 5.5 V is 3.85 V). The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage so the 6.0 V values should be used. Power dissipation capacitance (C_{PD}), typically 45 pF, determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$. Test not required if applied as a forcing function for V_{OH} or V_{OL} . AC testing at V_{CC} = 2.0 V and V_{CC} = 6.0 V shall be guaranteed, if not tested, to the specified parameters. Transition times (I_{THL} , I_{TLH}), if not tested, shall be guaranteed to the specified parameters.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A	CODE IDENT. NO. 14933	5962-86848
		REV A	PAGE 6

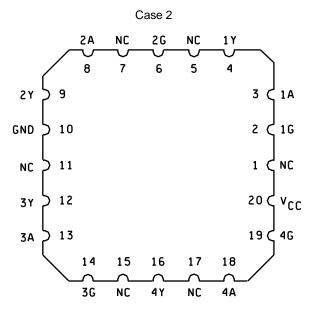


FIGURE 1. Terminal connections (top view).

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A	CODE IDENT. NO. 14933	5962-86848
		REV A	PAGE 7

(EACH BUFFER)

lnu	ıts	Outputs
G	Α	
Н	Н	Н
Н	L	L
L	Х	Z

FIGURE 2. Truth table.

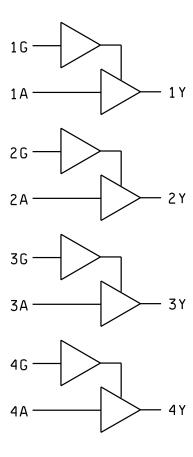
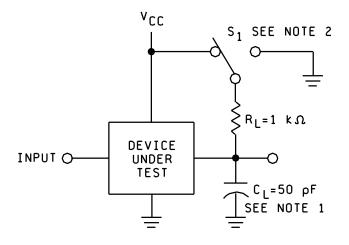



FIGURE 3. Logic diagram.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A	CODE IDENT. NO. 14933	5962-86848
		REV A	PAGE 8

NOTES:

- C_L includes load and test jig capacitance.
 S₁ = V_{CC} for t_{PZL} and t_{PLZ} measurements.
 S₁ = V_{CC} for t_{PZL} and t_{PLZ} measurements.

Test circuit.

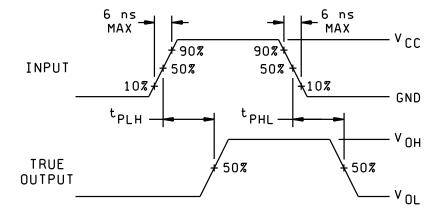


FIGURE 4. Swiching waveforms.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A	CODE IDENT. NO. 14933	5962-86848
		REV A	PAGE 9

PROPAGATION DELAY WAVEFORMS

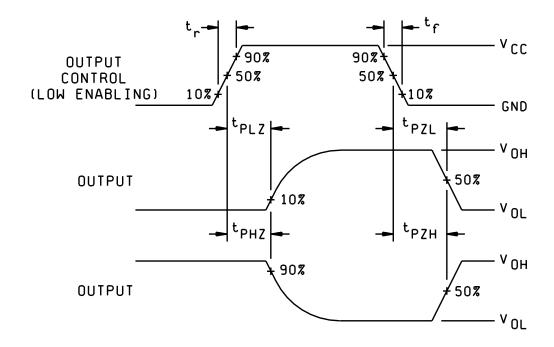


FIGURE 4. Swiching waveforms.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A	CODE IDENT. NO. 14933	5962-86848
		REV A	PAGE 10

- 3.8 <u>Verification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STD-883).
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ} C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5, 6, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance.
 - d. Subgroup 7 tests sufficient to verify the truth table.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ} C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A	CODE IDENT. NO. 14933	5962-86848
		REV A	PAGE 11

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	1
Final electrical test parameters (method 5004)	1*, 2, 3, 9
Group A test requirements (method 5005)	1, 2, 3, 4, 7, 9 10, 11**
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3
Additional electrical subgroups for group C periodic inspections	

- * PDA applies to subgroup 1.
- ** Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.
- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Comments</u>. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE A	CODE IDENT. NO. 14933	5962-86848
	REV A	PAGE 12

6.4 <u>Approved source of supply</u>. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /
5962-8684801CX	27014 18714 01295	MM54HC126J/883 CD54HC126F/3A SNJ54HC126J
5962-86848012X	01295 27014	SNJ54HC126FK MM54HC126E/883

1/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number	Vendor name and address
65342	National Semiconductor 2900 Semiconductor Dr. Santa Clara, CA 95051
18714	RCA Corporation Route 202 Somerville, NJ 08876
01295	Texas Instruments, Inc. P.O. Box 6448 Midland, TX 79701

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE A	CODE IDENT. NO. 14933	5962-86848
	REV A	PAGE 13